Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0288096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535641

RESUMO

This study presented the expression of the outer membrane protein N in E. coli BL21 (DE3) Omp8 Rosetta under its growth condition and by osmoregulation. The effects of osmotic stress caused by salts, sugars, or pH values on the survival of the target Gram-negative bacterial strain of E. coli BL21 (DE3) Omp8 Rosetta and OmpN expression remain unknown. Here, tryptone yeast extract with varied salts and concentrations was initially used to generate an LB broth medium. To show how salts and concentration affect bacterial growth, the optical density at 600 nm was measured. The findings supported the hypothesis that salts and concentrations control bacterial growth. Moreover, a Western blotting study revealed that OmpN overexpression was present in all tested salts after stimulation with both glucose and fructose after being treated individually with anti-OmpN and anti-histidine tag polyclonal antibodies on transferred nitrocellulose membrane containing crude OmpN. Following the presence of the plasmid pET21b(+)/ompN-BOR into E. coli BL21 (DE3) Omp8 Rosetta, which was expressed in the recombinant OmpN protein (BOR), OmpN expression was demonstrated for all monovalent cations as well as MgCl2. All of the tested salts, except for BaCl2, NaH2PO4, and KH2PO4, showed overexpression of recombinant BOR after Isopropyl ß-D-1-thiogalactopyranoside (IPTG) induction. Using CH3COONa, both with and without IPTG induction, there was very little bacterial growth and no OmpN expression. With NaCl, a pH value of 7 was suitable for bacterial development, whereas KCl required a pH value of 8. According to this research, bacterial growth in addition to salts, sugars, and pH values influences how the OmpN protein is produced.


Assuntos
Escherichia coli , Sais , Escherichia coli/genética , Escherichia coli/metabolismo , Sais/metabolismo , Osmorregulação , Açúcares/metabolismo , Isopropiltiogalactosídeo/farmacologia , Proteínas Recombinantes/metabolismo , Proteínas de Membrana/metabolismo
2.
Int J Biol Macromol ; 164: 3508-3522, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858106

RESUMO

Vibrio campbellii (formerly Vibrio harveyi) is a bacterial pathogen that causes vibriosis, which devastates fisheries and aquaculture worldwide. V. campbellii expresses chitinolytic enzymes and chitin binding/transport proteins, which serve as excellent targets for antimicrobial agent development. We previously characterized VhChiP, a chitooligosaccharide-specific porin from the outer membrane of V. campbellii BAA-1116. This study employed far-UV circular dichroism and tryptophan fluorescence spectroscopy, together with single channel electrophysiology to demonstrate that the strong binding of chitoligosaccharides enhanced thermal stability of VhChiP. The alanine substitution of Trp136 at the center of the affinity sites caused a marked decrease in the binding affinity and decreased the thermal stability of VhChiP. Tryptophan fluorescence titrations over a range of temperatures showed greater free-energy changes on ligand binding (ΔG°binding) with increasing chain length of the chitooligosaccharides. Our findings suggest the possibility of designing stable channel-blockers, using sugar-based analogs that serve as antimicrobial agents, active against Vibrio infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Porinas/química , Vibrio , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação , Desenvolvimento de Medicamentos , Expressão Gênica , Modelos Moleculares , Estrutura Molecular , Peso Molecular , Porinas/antagonistas & inibidores , Porinas/genética , Ligação Proteica , Estabilidade Proteica , Desdobramento de Proteína , Proteínas Recombinantes , Análise Espectral , Relação Estrutura-Atividade , Termodinâmica , Vibrio/efeitos dos fármacos , Vibrio/genética , Vibrio/metabolismo , Vibrioses/tratamento farmacológico , Vibrioses/microbiologia
3.
Biochim Biophys Acta Biomembr ; 1861(3): 610-618, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576623

RESUMO

BACKGROUND: VhChiP is a sugar-specific-porin present in the outer membrane of the marine bacterium Vibrio harveyi and responsible for chitin uptake, with a high selectivity for chitohexaose. METHODS: VhChiP and its mutants were expressed and purified from BL21 (DE3) Omp8 Rosetta strain. After reconstitution into planar lipid bilayers, the ion current fluctuations caused by chitohexaose entering the channel were measured in deuterium oxide and in water. RESULTS: The role of hydrogen-bonding in sugar binding was investigated by comparing channel occlusion by chitohexaose in buffers containing H2O and D2O. The BLM results revealed the significant contribution of hydrogen bonding to the binding of chitohexaose in the constriction zone of VhChiP. Replacing H2O as solvent by D2O significantly decreased the on- and off-rates of sugar penetration into the channel. The importance of hydrogen bonding inside the channel was more noticeable when the hydrophobicity of the constriction zone was diminished by replacing Trp136 with the charged residues Asp or Arg. The on- and off-rates decreased up to 2.5-fold and 4-fold when Trp136 was replaced by Arg, or 5-fold and 3-fold for Trp136 replacement by Asp, respectively. Measuring the on-rate at different temperatures and for different channel mutants revealed the activation energy for chitohexaose entrance into VhChiP channel. CONCLUSIONS: Hydrogen-bonds contribute to sugar permeation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Hidrogênio/farmacologia , Porinas/metabolismo , Açúcares/metabolismo , Vibrio , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Hidrogênio/química , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Organismos Geneticamente Modificados , Porinas/química , Porinas/genética , Ligação Proteica/efeitos dos fármacos , Vibrio/genética , Vibrio/metabolismo
4.
J Biol Chem ; 290(31): 19184-96, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26082491

RESUMO

VhChiP is a sugar-specific porin present in the outer membrane of the marine bacterium Vibrio harveyi. VhChiP is responsible for the uptake of chitin oligosaccharides, with particular selectivity for chitohexaose. In this study, we employed electrophysiological and biochemical approaches to demonstrate that Trp(136), located at the mouth of the VhChiP pore, plays an essential role in controlling the channel's ion conductivity, chitin affinity, and permeability. Kinetic analysis of sugar translocation obtained from single channel recordings indicated that the Trp(136) mutations W136A, W136D, W136R, and W136F considerably reduce the binding affinity of the protein channel for its best substrate, chitohexaose. Liposome swelling assays confirmed that the Trp(136) mutations decreased the rate of bulk chitohexaose permeation through the VhChiP channel. Notably, all of the mutants show increases in the off-rate for chitohexaose of up to 20-fold compared with that of the native channel. Furthermore, the cation/anion permeability ratio Pc/Pa is decreased in the W136R mutant and increased in the W136D mutant. This demonstrates that the negatively charged surface at the interior of the protein lumen preferentially attracts cationic species, leading to the cation selectivity of this trimeric channel.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Triptofano/química , Vibrio , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação , Cinética , Lipossomos/química , Potenciais da Membrana , Dados de Sequência Molecular , Oligossacarídeos/química , Permeabilidade , Ligação Proteica , Triptofano/genética
5.
J Biol Chem ; 288(16): 11038-46, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23447539

RESUMO

Chitoporin (VhChiP) is a sugar-specific channel responsible for the transport of chitooligosaccharides through the outer membrane of the marine bacterium Vibrio harveyi. Single channel reconstitution into black lipid membrane allowed single chitosugar binding events in the channel to be resolved. VhChiP has an exceptionally high substrate affinity, with a binding constant of K = 5.0 × 10(6) M(-1) for its best substrate (chitohexaose). The on-rates of chitosugars depend on applied voltages, as well as the side of the sugar addition, clearly indicating the inherent asymmetry of the VhChiP lumen. The binding affinity of VhChiP for chitohexaose is 1-5 orders of magnitude larger than that of other known sugar-specific porins for their preferred substrates. Thus, VhChiP is the most potent sugar-specific channel reported to date, with its high efficiency presumably reflecting the need for the bacterium to take up chitin-containing nutrients promptly under turbulent aquatic conditions to exploit them efficiently as its sole source of energy.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Oligossacarídeos/metabolismo , Vibrio/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Oligossacarídeos/química , Oligossacarídeos/genética , Ligação Proteica , Vibrio/química , Vibrio/genética
6.
PLoS One ; 8(1): e55126, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383078

RESUMO

BACKGROUND: Chitin is the most abundant biopolymer in marine ecosystems. However, there is no accumulation of chitin in the ocean-floor sediments, since marine bacteria Vibrios are mainly responsible for a rapid turnover of chitin biomaterials. The catabolic pathway of chitin by Vibrios is a multi-step process that involves chitin attachment and degradation, followed by chitooligosaccharide uptake across the bacterial membranes, and catabolism of the transport products to fructose-6-phosphate, acetate and NH(3). PRINCIPAL FINDINGS: This study reports the isolation of the gene corresponding to an outer membrane chitoporin from the genome of Vibrio harveyi. This porin, expressed in E. coli, (so called VhChiP) was found to be a SDS-resistant, heat-sensitive trimer. Immunoblotting using anti-ChiP polyclonal antibody confirmed the expression of the recombinant ChiP, as well as endogenous expression of the native protein in the V. harveyi cells. The specific function of VhChiP was investigated using planar lipid membrane reconstitution technique. VhChiP nicely inserted into artificial membranes and formed stable, trimeric channels with average single conductance of 1.8±0.13 nS. Single channel recordings at microsecond-time resolution resolved translocation of chitooligosaccharides, with the greatest rate being observed for chitohexaose. Liposome swelling assays showed no permeation of other oligosaccharides, including maltose, sucrose, maltopentaose, maltohexaose and raffinose, indicating that VhChiP is a highly-specific channel for chitooligosaccharides. CONCLUSION/SIGNIFICANCE: We provide the first evidence that chitoporin from V. harveyi is a chitooligosaccharide specific channel. The results obtained from this study help to establish the fundamental role of VhChiP in the chitin catabolic cascade as the molecular gateway that Vibrios employ for chitooligosaccharide uptake for energy production.


Assuntos
Organismos Aquáticos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Quitina/metabolismo , Vibrio/metabolismo , Sequência de Aminoácidos , Organismos Aquáticos/citologia , Organismos Aquáticos/genética , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Membrana Celular/metabolismo , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Lipossomos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Permeabilidade , Estrutura Secundária de Proteína , Transporte Proteico , Vibrio/citologia , Vibrio/genética
7.
Biochim Biophys Acta ; 1808(6): 1552-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21078354

RESUMO

Burkholderia pseudomallei (Bps) is a Gram-negative bacterium that causes melioidosis, an infectious disease of animals and humans common in northern and north-eastern parts of Thailand. Successful treatment of melioidosis is difficult due to intrinsic resistance of Bps to various antibacterial agents. It has been suggested that the antimicrobial resistance of this organism may result from poor permeability of the active compounds through porin channels located in the outer membrane (OM) of the bacterium. In previous work, a 38-kDa protein, named "BpsOmp38", was isolated from the OM of Bps. A topology prediction and liposome-swelling assay suggested that BpsOmp38 comprises a ß-barrel structure and acts as a general diffusion porin. The present study employed black lipid membrane (BLM) reconstitution to demonstrate the single-channel conductance of the trimeric BpsOmp38 to be 2.7±0.3 nS in 1M KCl. High-time resolution BLM measurements displayed ion current blockages of seven antimicrobial agents in a concentration-dependent manner with the translocation on-rate (kon) following the order: norfloxacin≫ertapenem>ceftazidime>cefepime>imipenem>meropenem>penicillin G. The dwell time of a selected antimicrobial agent (ertapenem) decayed exponentially with increasing temperature. The energy barrier for the ertapenem binding to the affinity site inside the BpsOmp38 channel was estimated from the Arrhenius plot to be 12 kT and for the ertapenem release to be 13 kT at +100 mV. The BLM data obtained from this study provide the first insight into antimicrobial agent translocation through the BpsOmp38 channel.


Assuntos
Anti-Infecciosos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Burkholderia pseudomallei/metabolismo , Porinas/metabolismo , Sequência de Aminoácidos , Anti-Infecciosos/farmacocinética , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico , Burkholderia pseudomallei/genética , Cefepima , Ceftazidima/metabolismo , Ceftazidima/farmacocinética , Cefalosporinas/metabolismo , Cefalosporinas/farmacocinética , Ertapenem , Humanos , Imipenem/metabolismo , Imipenem/farmacocinética , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Melioidose/microbiologia , Meropeném , Modelos Moleculares , Dados de Sequência Molecular , Norfloxacino/metabolismo , Norfloxacino/farmacocinética , Penicilina G/metabolismo , Penicilina G/farmacocinética , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Porinas/química , Porinas/genética , Conformação Proteica , Homologia de Sequência de Aminoácidos , Tienamicinas/metabolismo , Tienamicinas/farmacocinética , beta-Lactamas/metabolismo , beta-Lactamas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...